EIECTROMAGNETIC DISTURBANCE CAUSED BY EXPANDING
IDEALLY CONDUCTING SPHERE IN A MAGNETIC FIELD

V. K. Bodulinskii and Yu. A. Medvedev

We examine the electromagnetic disturbance which occurs during linear expansion of an ideally con~
ducting sphere in an external homogeneous magnetic field for velocities comparable with the speed of light,
We examine the field transition into the static regime after the sphere stops,

1. The problem of the electromagnetic fields which develop during rapid expansion of an ideally con-
ducting sphere in a homogeneous magnetic field was studied in [1], where an erroneous result was ob-
tained (the solution does not satisfy the basic Maxwell equations). This remark also applies to the results
presented in [1] for a pulsating sphere,

Assume that an ideally conducting sphere whose center coincides with the center of the spherical
coordinate system expands following the linear law a =vt (a is the sphere radius) in an external uniform
magnetic field H, directed along the z axis,

The electric field E and magnetic field H satisfy the equations
rotH:%gtE, rotE:——i%—?, divH =20 (1_1)
By virtue of problem symmetry, the field is independent of the angle ¢, and the magnetic field has

nonzero components H,. (r, #, t) and Hy(r, ¢, t), while the electric field has only qu(r, #, t).

The system of equations (1.1) must be supplemented by boundary and initial conditions. It is clear
from the problem formulation that at the initial time

H.(r, ®, 0)= Hycos®d,  Hg(r, 9, 0)= —H, sind, E,(r, 8, 0)=0 (1.2)
In accordance with [2] the boundary condition at the sphere surface must have the form
(E+ctv, HY) =0 (1.3)
or in terms of the components
E,(a, 8,0 + acHyla, , =0 (1.4)
The angular dependence in (1.1), (1.2), (1.4) separates if we set
Hy(r, 8, ty=cos® H,(r,t), Hylr, ®, t)=—sind Hy(r, 1), E,(r, &, 1) =sin®E,(r, 1), (1.5)

after which we obtain the problem

{O(Hy) 1, { 0B, 2E, 1 0H, 1 8 (1.6)
T e T TT T m e T T a e He=my i
Ho(r,0)=Hgy(r, O)=Ho, E,(r, 0)=0, E,(a, t)y—ac Hg(a, t)=0 (1.7)

2. Let us examine the solution of (1.6), (1.7) in the region

D=fa () <r<, t20
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From (1.6) we have

2 4 0H 1 6°H
*H, oMy 2 L0 (2.1)

o r or ¢t o2 T
We shall seek the solution of (2.1), regular at infinity and satisfying the radiation principle, by separating
the self-similar parameter — the method used in [3].

The solution of (2.1) must have the form of a diverging wave; therefore, we convert to the new vari-
ables

p=r, r=t—rfe (2.2)
After which (2.1) takes the form

#H, 2 0H, 40H, 4 oM,
T e Hmn T % e =0 2.3)

In this problem there are three independent similarity criteria: Hr/Ho, B =v/c, x=cT/p. Therefore,
on the basis of the m-theorem [4], the solution of (2.3) can be written in the form

Hy | Ho= (B, 2) (2.4)

or, since B8 =const,
Hr(Py T) = HO IF (I)

For ¥ (x) we obtain from (2.3)
ia 2 dy
(a2 4 28) T~ 2o 4 1) =0 (2.5)

having the solution
Y (z)== A (s* +32%) + B

(2.6)
where A and B are constants of integration,
Returning in (2.6) to the original variables, we obtain
H, (r, t)=H, {A [(Ct_r)3+3 (\dr-’ﬂ_;—B} (2.7)
Substituting (2.7) into (1.6), we obtain A
E,(r, t)=—15HA K“ - r)z-;-z(“'r‘ ')] (2.8)
ot 0= ol (57 4 (5 4o (557 |-} 2.9)
The constants A and B are found from the conditions (1.7):
A= 281214207 B=1 (2.10)
We write the solution;
1,0, 9, = Hocosd {1 =27 @m et — 0 [(“F2 5 (2]}
Hg(r, 9,1)=— Hysin © {1 +F@) n(e—r) [(”t = B’)a.(_ 33(”t = B’)z_‘. 63 (”t — Brﬂ_} (2.11)

E,(r, 9,t)=3H,sin 8F (3) [(”t = B’)2+ 2 <”‘ = B’)] 0 (ct —r)

F@=21(1—g (14287

Here n(ct—r) is the unit function.

We can see by direct substitution that the expressions (2.11) for the fields satisfy the Maxwell equa-
tions and the boundary and initial conditions.

3. The results obtained may be of interest in problems of rapid development of a conducting region
in external fields, for example, in examining electrodynamic effects accompanying the expansions of the
shock wave of a light spark in a laser beam in a magnetic field [5, 6].
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At the initial moment the strong shock wave front has high conductivity, the external field does not
penetrate inside the wave, and the boundary condition (1.4) is satisfied af the shock wave surface itself,
In the course of time the front temperature decreases, and the surface at which (1.4) is satisfied lags be-
hind the front and slows down rapidly.

In this connection, let us examine the following model problem: an ideally conducting sphere ex-
pands linearly in an external magnetic field up to the moment t,; then for t >t; the sphere stops. In this
case the field distribution given by (2.11) can be taken as initial distribution for t=t,. Let us examine the
relaxational process of field approach to the static value,

In place of the functions Hy, Hyg, Eyp, we introduce the function u(r, t), using the formulas

2 1 10
Her, )=, Hy=—7"—4, p——2 (3.1)
satisfying the equation
8%u 20u  2u 1 9%
e TR (3.2)
the boundary condition
u (ao’ t) = 0 (3-3)
and the initial condition
rHy _
u(r ) ="5" {1 —9F(@g) [( Br) +38 <“° B’) ]} (3.4)
As t—~, we can set in (3.2) 8%1/8t%=0, and in this limiting case we obtain
u(r, oo)= 1yrHy (1 — ag® /7% (3.5)
We convert in (3,2) from the variables r, t to the variables p, 7, using the formulas
p=r/ag T= g e (t — 1)) — (r — ap)]
Then the equation, boundary and initial conditions take the form
Pu_ Pu 204 20u 2 (3.6)
3 2ot e e a0
wt, 0=0, uwle0="5"[1—2rE)(F+R)] v o) =thonHot o) (3.7)

This problem is solved by the Laplace transformation with respect to the variable 7. Omitting the
tedious calculations, we write the solution

vl 9=EG i Spr @ e 41— ey BEB) ] (3.8)
Returning in (3.8) to r and t, we obtain
u(r, =20 {1_[2F (8yexp == °21;H'—“°)
— exp —C(t_t:l)o+ (r—-ao)] + 6BF(B 2 exp c(t—t(;)o—{-(r—ao)} (3.9)

This relation together with (3.1) yields the solution of the problem of the field relaxation process as
the sphere stops. We see from (3.9) and (3.1) that the fields approach the static regime (the electric field
approaches zero) exponentially, without oscillations. We can see from simple physical considerations that
this is a consequence of the homogeneity of the external field, when during expansion of the sphere surface
currents are induced at its surface which are distributed symmetrically relative to the diametral plane
perpendicular to the magnetic field, and as a consequence of this symmetry transfer of energy from one
pole to the other is not possible. In a nonuniform field the current distribution symmetry is disrupted and
at the moment of stopping an effective ring current flows on one of the hemispheres, which induces on the
other hemisphere an effective current, which in turn induces a current on the first hemisphere, and so on,
as a result of which oscillations develop.
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